首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:A wavelet approach towards examining dynamic association, causality and spillovers
  • 本地全文:下载
  • 作者:Indranil Ghosh ; Tamal Datta Chaudhuri
  • 期刊名称:International Journal of Data and Network Science
  • 印刷版ISSN:2561-8148
  • 电子版ISSN:2561-8156
  • 出版年度:2019
  • 卷号:3
  • 期号:1
  • 页码:23-36
  • DOI:10.5267/j.ijdns.2018.11.002
  • 出版社:Growing Science
  • 摘要:This paper presents an integrated granular framework of wavelet decomposition, DCC-GARCH, ADCC-GARCH, Diks-Panchenko nonlinear Granger’s causality and Diebold-Yilmaz spillover assessment techniques to understand temporal correlation, causal interplay and spillovers among volatile financial time series data exhibiting nonparametric behavior. The exercise has been carried out on daily closing observations of eight financial time series. Wavelet decomposition has been used to generate time varying components in which the other research models are applied to extract the interactive pattern of interaction to ascertain short and long run nexus. The findings rationalize the effectiveness of the presented research framework.
  • 关键词:Dynamic Association; Causality; Spillover; Wavelet Decomposition; Diks-Panchenko Test; Diebold-Yilmaz Test
国家哲学社会科学文献中心版权所有