首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Cognitive Models in Cybersecurity: Learning From Expert Analysts and Predicting Attacker Behavior
  • 本地全文:下载
  • 作者:Veksler, Vladislav D. ; Buchler, Norbou ; LaFleur, Claire G.
  • 期刊名称:Frontiers in Psychology
  • 电子版ISSN:1664-1078
  • 出版年度:2020
  • 卷号:11
  • 页码:1-13
  • DOI:10.3389/fpsyg.2020.01049
  • 出版社:Frontiers Media
  • 摘要:Cybersecurity stands to benefit greatly from models able to generate predictions of attacker and defender behavior. On the defender side, there is promising research suggesting that Symbolic Deep Learning (SDL) may be employed to automatically construct cognitive models of expert behavior based on small samples of expert decisions. Such models could then be employed to provide decision support for non-expert users in the form of explainable expert-based suggestions. On the attacker side, there is promising research suggesting that model-tracing with dynamic parameter fitting may be used to automatically construct models during live attack scenarios, and to predict individual attacker preferences. Predicted attacker preferences could then be exploited for mitigating risk of successful attacks. In this paper we examine how these two cognitive modeling approaches may be useful for cybersecurity professionals via two human experiments. In the first experiment participants play the role of cyber analysts performing a task based on Intrusion Detection System alert elevation. Experiment results and analysis reveal that SDL can help to reduce missed threats by 25%. In the second experiment participants play the role of attackers picking among four attack strategies. Experiment results and analysis reveal that model-tracing with dynamic parameter fitting can be used to predict (and exploit) most attackers’ preferences 40 − 70% of the time. We conclude that studies and models of human cognition are highly valuable for advancing cybersecurity.
  • 关键词:Cognitive Modeling; cybersecurity; Model tracing; symbolic deep learning; Behavioral predictions; Decision aid; Human-agent teaming
国家哲学社会科学文献中心版权所有