首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:HiPR: High-throughput probabilistic RNA structure inference
  • 本地全文:下载
  • 作者:Pavel P. Kuksa ; Fan Li ; Sampath Kannan
  • 期刊名称:Computational and Structural Biotechnology Journal
  • 印刷版ISSN:2001-0370
  • 出版年度:2020
  • 卷号:18
  • 页码:1539-1547
  • DOI:10.1016/j.csbj.2020.06.004
  • 出版社:Computational and Structural Biotechnology Journal
  • 摘要:Recent high-throughput structure-sensitive genome-wide sequencing-based assays have enabled large-scale studies of RNA structure, and robust transcriptome-wide computational prediction of individual RNA structures across RNA classes from these assays has potential to further improve the prediction accuracy. Here, we describe HiPR, a novel method for RNA structure prediction at single-nucleotide resolution that combines high-throughput structure probing data (DMS-seq, DMS-MaPseq) with a novel probabilistic folding algorithm. On validation data spanning a variety of RNA classes, HiPR often increases accuracy for predicting RNA structures, giving researchers new tools to study RNA structure.
  • 关键词:High-throughput structure-sensitive sequencing ; RNA structure inference ; Probabilistic modeling ; DMS-seq ; DMS-MaPseq
国家哲学社会科学文献中心版权所有