首页    期刊浏览 2025年07月10日 星期四
登录注册

文章基本信息

  • 标题:Optimizing the Acquisition Cost of Input Data for Daily National Power System Load Forecasts Using Automated Statistical Methods
  • 本地全文:下载
  • 作者:Rafał Czapaj
  • 期刊名称:Acta Energetica
  • 印刷版ISSN:2300-3022
  • 出版年度:2017
  • 期号:32
  • 页码:37-48
  • DOI:10.12736/issn.2300-3022.2017303
  • 语种:English
  • 出版社:ENERGA SA
  • 摘要:The paper presents the possibility of using statistical methods to automate the selection of explanatory variables to balance the daily load of the National Power System (NPS).With automation,the cost of input forecast purchase may be optimized by minimizing their number,and the results also allow for a reduction in the effort required to select input parameters (explanatory variables) for later forecasting of NPS daily loads.
  • 关键词:NPS load;NPS power demand;hourly average forecasts;explanatory variables;input parameters;meteorological parameters;statistical methods;data mining
国家哲学社会科学文献中心版权所有