首页    期刊浏览 2025年07月18日 星期五
登录注册

文章基本信息

  • 标题:Determination of WHtR Limit for Predicting Hyperglycemia in Obese Persons by Using Artificial Neural Networks
  • 本地全文:下载
  • 作者:Aleksandar Kupusinac ; Edith Stokic ; Biljana Srdic
  • 期刊名称:TEM Journal
  • 印刷版ISSN:2217-8309
  • 电子版ISSN:2217-8333
  • 出版年度:2012
  • 卷号:1
  • 期号:4
  • 页码:270-272
  • 语种:English
  • 出版社:UIKTEN
  • 摘要:The abdominal obesity is strongly associated with increased risk of obesity-related cardiometabolic disturbances. The proportion of waist circumference and body height,known as waist-toheight ratio (WHtR),has been shown as a good risk indicator related with abdominal obesity. This paper presents a solution based on artificial neural networks (ANN) for determining WHtR limit for predicting hyperglycemia in obese persons. ANN inputs are body mass index (BMI) and glycemia (GLY),and output is weist-to-height ratio (WHtR). ANN training and testing are done by dataset that includes 1281 persons.
  • 关键词:Artificial neural networks;obesity;waistto-height ratio.
国家哲学社会科学文献中心版权所有