期刊名称:RIED. Revista Iberoamericana de Educación a Distancia
印刷版ISSN:1138-2783
电子版ISSN:1390-3306
出版年度:2020
卷号:23
期号:2
页码:127-145
DOI:10.5944/ried.23.2.26539
出版社:Asociación Iberoamericana de Educación Superior a Distancia
摘要:Una de las herramientas más utilizadas por los profesionales de las tecnologías de la información y la comunicación son los sistemas de control de versiones. Estas herramientas permiten, entre otras cosas, monitorizar la actividad de las personas que trabajan en un proyecto. Por tanto, es recomendable que se utilicen también en las instituciones educativas. El objetivo de este trabajo es evaluar si el resultado académico de los estudiantes se puede predecir monitorizando su actividad en uno de estos sistemas. Para tal efecto, hemos construido un modelo que predice el resultado de los estudiantes en una práctica de la asignatura Ampliación de Sistemas Operativos, perteneciente al segundo curso del grado en Ingeniería Informática de la Universidad de León. Para obtener la predicción, el modelo analiza la interacción del estudiante con un repositorio Git. Para diseñar el modelo, se evalúan varios modelos de clasificación y predicción utilizando la herramienta MoEv. Esta herramienta permite entrenar y validar diferentes modelos de clasificación y obtener el más adecuado para un problema concreto. Además, la herramienta permite identificar las características más discriminantes dentro de los datos de entrada. El modelo resultante ha sido entrenado utilizando los resultados del curso 2016 – 2017. Posteriormente, para asegurar que el modelo generaliza correctamente, se ha validado utilizando datos del curso 2017 – 2018. Los resultados concluyen que el modelo predice el éxito de los estudiantes con un alto porcentaje de acierto.
其他摘要:Version Control Systems are commonly used by Information and Communication Technology professionals. These systems allow for monitoring programmers' activity working in a project. Thus, the usage of such systems should be encouraged by educational institutions. The aim of this work is to evaluate if students’ academic success can be predicted by monitoring their interaction with a Version Control System. In order to do so, we have built a model that predicts students’ results in a specific practical assignment of the Operating Systems Extension subject. A second-year subject in the degree in Computer Science at the University of León. In order to obtain a prediction, the model analyzes students’ interaction with a Git repository. To build the model, several classifiers and predictors have been evaluated by using the MoEv tool. The tool allows for evaluating several classification and prediction models in order to get the most suitable one for a specific problem. Prior to the model development, Moev performs a feature selection from input data to select the most significant ones. The resulting model has been trained using results from the 2016 – 2017 course year. Later, in order to ensure an optimal generalization, the model has been validated by using results from the 2017 – 2018 course. Results conclude that the model predicts students' outcomes? with a success high percentage.
关键词:Aplicación informática; tratamiento de la información; inteligencia artificial; proceso de aprendizaje
其他关键词:Computer application; information processing; machine learning; learning process.