首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:The Transition to Paschen’s Law for Microscale Gas Breakdown at Subatmospheric Pressure
  • 本地全文:下载
  • 作者:Amanda M. Loveless ; Guodong Meng ; Qi Ying
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-7
  • DOI:10.1038/s41598-019-42111-2
  • 出版社:Springer Nature
  • 摘要:The decrease in electronic device size necessitates greater understanding of gas breakdown and electron emission at microscale to optimize performance. While traditional breakdown theory using Paschen’s law (PL), driven by Townsend avalanche, fails for gap distance d $$\lesssim $$ ≲ 15 μm, recent studies have derived analytic equations for breakdown voltage when field emission and Townsend avalanche drive breakdown. This study derives a new analytic equation that predicts breakdown voltage VB within 4% of the exact numerical results of a previously derived theory and new experimental results at subatmospheric pressure for gap distances from 1–25 μm. At atmospheric pressure, VB transitions to PL near the product of pressure and gap distance, pd, corresponding to the Paschen minimum; at lower pressures, the transition to PL occurs to the left of the minimum. We further show that the work function plays a major role in determining which side of the Paschen minimum VB transitions to PL as pressure approaches atmospheric pressure while field enhancement and the secondary emission coefficient play smaller roles. These results indicate that appropriate combinations of these parameters cause VB to transition to PL to the left of the Paschen minimum, which would yield an extended plateau similar to some microscale gas breakdown experimental observations.
国家哲学社会科学文献中心版权所有