首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Prevention of mitochondrial genomic instability in yeast by the mitochondrial recombinase Mhr1
  • 本地全文:下载
  • 作者:Feng Ling ; Elliot Bradshaw ; Minoru Yoshida
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-019-41699-9
  • 出版社:Springer Nature
  • 摘要:Mitochondrial (mt) DNA encodes factors essential for cellular respiration, therefore its level and integrity are crucial. ABF2 encodes a mitochondrial DNA-binding protein and its null mutation (Δabf2) induces mtDNA instability in Saccharomyces cerevisiae. Mhr1 is a mitochondrial recombinase that mediates the predominant form of mtDNA replication and acts in mtDNA segregation and the repair of mtDNA double-stranded breaks (DSBs). However, the involvement of Mhr1 in prevention of mtDNA deletion mutagenesis is unknown. In this study we used Δabf2 mhr1-1 double-mutant cells, which lose mitochondrial function in media containing fermentable carbon sources, to investigate whether Mhr1 is a suppressor of mtDNA deletion mutagenesis. We used a suppresivity assay and Southern blot analysis to reveal that the Δabf2 mutation causes mtDNA deletions rather than an mtDNA-lacking (ρ0) phenotype, and observed that mtDNA deletions are exacerbated by an additional mhr1-1 mutation. Loss of respiratory function due to mtDNA fragmentation occurred in ∆mhr1 and ∆abf2 mhr1-1 cells. However, exogenous introduction of Mhr1 into Δabf2 mhr1-1 cells significantly rescued respiratory growth, suggesting that Mhr1-driven homologous mtDNA recombination prevents mtDNA instability.
国家哲学社会科学文献中心版权所有