首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Magnetic resonance imaging of brain cell water
  • 本地全文:下载
  • 作者:Takashi Watanabe ; Xiaoqing Wang ; Zhengguo Tan
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-019-41587-2
  • 出版社:Springer Nature
  • 摘要:In the central nervous system of vertebrates, cell bodies of neurons are often assembled as nuclei or cellular layers that play specific roles as functional units. The purpose of this work was to selectively highlight such cell assemblies by magnetic resonance imaging using signals from water protons that are associated with intracellular paramagnetic ions, while saturating lipid-associated water protons as well as extracellular free water protons. Given the significant correlation between image signal intensity and water proton density, the high signal intensities observed for such cell assemblies must be attributed to their abundant paramagnetic-ion-associated water protons. In the hippocampal formation, the technique visualized cell assemblies that were so far not depicted in human in vivo. In the brainstem, the technique delineated noradrenergic neuron groups such as the locus coeruleus in human and mice in vivo. Their reduced magnetization-transfer ratios together with their prolonged relaxation times compared to other gray matter indicate that the source of their high signal intensity is not the presence of T1-shortening molecules, e.g., neuromelanin, but their high water content. Given the general absence of neuromelanin in noradrenergic neurons of rodents, their high signal intensity in mice in vivo further supports this view.
国家哲学社会科学文献中心版权所有