首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Dunkl generalization of Phillips operators and approximation in weighted spaces
  • 本地全文:下载
  • 作者:M. Mursaleen ; Md. Nasiruzzaman ; A. Kılıçman
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2020
  • 卷号:2020
  • 期号:1
  • 页码:1-15
  • DOI:10.1186/s13662-020-02820-9
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The purpose of this article is to introduce a modification of Phillips operators on the interval $[ \frac),,\infty ) $ via a Dunkl generalization. We further define the Stancu type generalization of these operators as $\mathcal{S}_{n, \upsilon }^{\ast }(f;x)=\frac{n^,}{e_{\upsilon }(n\chi _{n}(x))}\sum_{\ell =0}^{\infty } \frac{(n\chi _{n}(x))^{\ell }}{\gamma _{\upsilon }(\ell )}\int _(^{\infty } \frac{e^{-nt}n^{\ell +2\upsilon \theta _{\ell }-1}t^{\ell +2\upsilon \theta _{\ell }}}{\gamma _{\upsilon }(\ell )}f ( \frac{nt+\alpha }{n+\beta } ) \,\mathrm{d}t$, $f\in C_{\zeta }(R^{+})$, and calculate their moments and central moments. We discuss the convergence results via Korovkin type and weighted Korovkin type theorems. Furthermore, we calculate the rate of convergence by means of the modulus of continuity, Lipschitz type maximal functions, Peetre’s K-functional and the second order modulus of continuity.
  • 关键词:Szász operator;Dunkl analogue;Generalization of exponential function;Korovkin type theorem;Modulus of continuity;Order of convergence;
国家哲学社会科学文献中心版权所有