首页    期刊浏览 2025年07月26日 星期六
登录注册

文章基本信息

  • 标题:An exponential-trigonometric spline minimizing a seminorm in a Hilbert space
  • 本地全文:下载
  • 作者:Kholmat M. Shadimetov ; Aziz K. Boltaev
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2020
  • 卷号:2020
  • 期号:1
  • 页码:1-16
  • DOI:10.1186/s13662-020-02805-8
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In the present paper, using the discrete analogue of the operator $\mathrm{d} ^{6}/\mathrm{d} x^{6}-1$, we construct an interpolation spline that minimizes the quantity $\int _(^)(\varphi {'''}(x)+\varphi (x))^,\,\mathrm{d}x$ in the Hilbert space $W_,^{(3,0)}$. We obtain explicit formulas for the coefficients of the interpolation spline. The obtained interpolation spline is exact for the exponential-trigonometric functions ${{e}^{-x}}$, ${{e}^{\frac{x},}}\cos ( \frac{\sqrt"},x)$, and ${{e}^{\frac{x},}}\sin ( \frac{\sqrt"},x )$.
  • 关键词:Interpolation spline;Hilbert space;The norm minimizing property;Sobolev’s method;Discrete argument function;
国家哲学社会科学文献中心版权所有