摘要:In this paper, we investigate a class of nonlinear fractional Schrödinger systems $$ \left \{ \textstyle\begin{array}{l@{\quad}l}(-\triangle)^{s} u +V(x)u=F_{u}(x,u,v),& x\in \mathbb{R}^{N}, \\(-\triangle)^{s} v +V(x)v=F_{v}(x,u,v),& x\in\mathbb{R}^{N}, \end{array}\displaystyle \right . $$ where $s\in(0, 1)$, $N>2$. Under relaxed assumptions on $V(x)$ and $F(x, u, v)$, we show the existence of infinitely many high energy solutions to the above fractional Schrödinger systems by a variant fountain theorem.