首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Positive periodic solutions for high-order differential equations with multiple delays in Banach spaces
  • 本地全文:下载
  • 作者:Yue Liang ; Hong Li
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2020
  • 卷号:2020
  • 期号:1
  • 页码:1-17
  • DOI:10.1186/s13662-020-02595-z
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper deals with the existence of positive ω-periodic solutions for nth-order ordinary differential equation with delays in Banach space E of the form $$L_{n}u(t)=f\bigl(t,u(t-\tau_)),\ldots,u(t- \tau_{m})\bigr),\quad t\in\mathbb{R}, $$ where $L_{n}u(t)=u^{(n)}(t)+\sum_{i=0}^{n-1}a_{i} u^{(i)}(t)$ is the nth-order linear differential operator, $a_{i}\in\mathbb {R}$ ($i=0,1,\ldots,n-1$) are constants, $f: \mathbb{R}\times E^{m}\rightarrow E$ is a continuous function which is ω-periodic with respect to t, and $\tau_{i}>0$ ($i=1,2,\ldots,m$) are constants which denote the time delays. We first prove the existence of ω-periodic solutions of the corresponding linear problem. Then the strong positivity estimation is established. Finally, two existence theorems of positive ω-periodic solutions are proved. Our discussion is based on the theory of fixed point index in cones.
  • 关键词:nth-order differential equation;Delays;Positive ω-periodic solution;Existence;Fixed point index theory;
国家哲学社会科学文献中心版权所有