首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:IMPROVING APPROXIMATION RATIOS FOR THE CLUSTERED TRAVELING SALESMAN PROBLEM
  • 本地全文:下载
  • 作者:Masamune Kawasaki ; Kenjiro Takazawa
  • 期刊名称:日本オペレーションズ・リサーチ学会論文誌
  • 印刷版ISSN:0453-4514
  • 电子版ISSN:2188-8299
  • 出版年度:2020
  • 卷号:63
  • 期号:2
  • 页码:60-70
  • DOI:10.15807/jorsj.63.60
  • 出版社:Japan Science and Technology Information Aggregator, Electronic
  • 摘要:The clustered traveling salesman problem (CTSP) is a generalization of the traveling salesman problem (TSP) in which the set of cities is divided into clusters and the salesman must consecutively visit the cities of each cluster. It is well known that TSP is NP-hard, and hence CTSP is NP-hard as well. Guttmann-Beck et al. (2000) designed approximation algorithms for several variants of CTSP by decomposing it into subproblems including the traveling salesman path problem (TSPP). In this paper, we improve approximation ratios by applying a recent improved approximation algorithm for TSPP by Zenklusen (2019).
  • 关键词:Combinatorial optimization;clustered traveling salesman problem;traveling salesman problem;approximation algorithms
国家哲学社会科学文献中心版权所有