首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Dynamic Multi-Swarm Differential Learning Quantum Bird Swarm Algorithm and Its Application in Random Forest Classification Model
  • 本地全文:下载
  • 作者:Jiangnan Zhang ; Kewen Xia ; Ziping He
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-24
  • DOI:10.1155/2020/6858541
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Bird swarm algorithm is one of the swarm intelligence algorithms proposed recently. However, the original bird swarm algorithm has some drawbacks, such as easy to fall into local optimum and slow convergence speed. To overcome these short-comings, a dynamic multi-swarm differential learning quantum bird swarm algorithm which combines three hybrid strategies was established. First, establishing a dynamic multi-swarm bird swarm algorithm and the differential evolution strategy was adopted to enhance the randomness of the foraging behavior’s movement, which can make the bird swarm algorithm have a stronger global exploration capability. Next, quantum behavior was introduced into the bird swarm algorithm for more efficient search solution space. Then, the improved bird swarm algorithm is used to optimize the number of decision trees and the number of predictor variables on the random forest classification model. In the experiment, the 18 benchmark functions, 30 CEC2014 functions, and the 8 UCI datasets are tested to show that the improved algorithm and model are very competitive and outperform the other algorithms and models. Finally, the effective random forest classification model was applied to actual oil logging prediction. As the experimental results show, the three strategies can significantly boost the performance of the bird swarm algorithm and the proposed learning scheme can guarantee a more stable random forest classification model with higher accuracy and efficiency compared to others.
国家哲学社会科学文献中心版权所有