摘要:This study aimed to describe and compare the ventilation behavior during an incremental test utilizing three mathematical models and to compare the feature of ventilation curve fitted by the best mathematical model between aerobically trained (TR) and untrained (UT) men. Thirty five subjects underwent a treadmill test with 1 km·h-1 increases every minute until exhaustion. Ventilation averages of 20 seconds were plotted against time and fitted by: bi-segmental regression model (2SRM); three-segmental regression model (3SRM); and growth exponential model (GEM). Residual sum of squares (RSS) and mean square error (MSE) were calculated for each model. The correlations between peak VO2 (VO2PEAK), peak speed (SpeedPEAK), ventilatory threshold identified by the best model (VT2SRM) and the first derivative calculated for workloads below (moderate intensity) and above (heavy intensity) VT2SRM were calculated. The RSS and MSE for GEM were significantly higher (p < 0.01) than for 2SRM and 3SRM in pooled data and in UT, but no significant difference was observed among the mathematical models in TR. In the pooled data, the first derivative of moderate intensities showed significant negative correlations with VT2SRM (r = -0.58; p < 0.01) and SpeedPEAK (r = -0.46; p < 0.05) while the first derivative of heavy intensities showed significant negative correlation with VT2SRM (r = -0. 43; p < 0.05). In UT group the first derivative of moderate intensities showed significant negative correlations with VT2SRM (r = -0.65; p < 0.05) and SpeedPEAK (r = -0.61; p < 0.05), while the first derivative of heavy intensities showed significant negative correlation with VT2SRM (r= -0.73; p< 0.01), SpeedPEAK (r = -0.73; p < 0.01) and VO2PEAK (r = -0.61; p < 0.05) in TR group. The ventilation behavior during incremental treadmill test tends to show only one threshold. UT subjects showed a slower ventilation increase during moderate intensities while TR subjects showed a slower ventilation increase during heavy intensities.
关键词:Ventilatory threshold;mathematical modeling;ventilatory responses;aerobic training status