摘要:The pulmonary oxygen uptake (VO2) response to incremental-ramp cycle ergometry typically demonstrates lagged-linear first-order kinetics with a slope of ~10-11 ml·min-1·W-1, both above and below the lactate threshold (θL), i.e. there is no discernible VO2 slow component (or “excess” VO2) above θL. We were interested in determining whether a reverse ramp profile would yield the same response dynamics. Ten healthy males performed a maximum incremental -ramp (15-30 W·min-1, depending on fitness). On another day, the work rate (WR) was increased abruptly to the incremental maximum and then decremented at the same rate of 15-30 W.min-1 (step-decremental ramp). Five subjects also performed a sub-maximal ramp-decremental test from 90% of θL. VO2 was determined breath-by-breath from continuous monitoring of respired volumes (turbine) and gas concentrations (mass spectrometer). The incremental-ramp VO2-WR slope was 10.3 ± 0.7 ml·min-1·W-1, whereas that of the descending limb of the decremental ramp was 14.2 ± 1.1 ml·min-1·W-1 (p < 0.005). The sub-maximal decremental-ramp slope, however, was only 9. 8 ± 0.9 ml·min-1·W-1: not significantly different from that of the incremental-ramp. This suggests that the VO2 response in the supra-θL domain of incremental-ramp exercise manifest not actual, but pseudo, first-order kinetics.