首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Effect of Kayak Ergometer Elastic Tension on Upper Limb EMG Activity and 3D Kinematics
  • 本地全文:下载
  • 作者:Neil Fleming ; Neil Fleming ; Bernard Donne
  • 期刊名称:Journal of Sports Science and Medicine
  • 印刷版ISSN:1303-2968
  • 出版年度:2012
  • 卷号:11
  • 期号:3
  • 页码:430-437
  • 语种:English
  • 出版社:University of Uludag
  • 摘要:Despite the prevalence of shoulder injury in kayakers, limited published research examining associated upper limb kinematics and recruitment patterns exists. Altered muscle recruitment patterns on-ergometer vs. on-water kayaking were recently reported, however, mechanisms underlying changes remain to be elucidated. The current study assessed the effect of ergometer recoil tension on upper limb recruitment and kinematics during the kayak stroke. Male kayakers (n = 10) performed 4 by 1 min on-ergometer exercise bouts at 85%VO2max at varying elastic recoil tension; EMG, stroke force and three-dimensional 3D kinematic data were recorded. While stationary recoil forces significantly increased across investigated tensions (125% increase, p < 0.001), no significant differences were detected in assessed force variables during the stroke cycle. In contrast, increasing tension induced significantly higher Anterior Deltoid (AD) activity in the latter stages (70 to 90%) of the cycle (p < 0.05). No significant differences were observed across tension levels for Triceps Brachii or Latissimus Dorsi. Kinematic analysis revealed that overhead arm movements accounted for 39 ± 16% of the cycle. Elbow angle at stroke cycle onset was 144 ± 10°; maximal elbow angle (151 ± 7°) occurred at 78 ± 10% into the cycle. All kinematic markers moved to a more anterior position as tension increased. No significant change in wrist marker elevation was observed, while elbow and shoulder marker elevations significantly increased across tension levels (p < 0.05). In conclusion, data suggested that kayakers maintained normal upper limb kinematics via additional AD recruitment despite ergometer induced recoil forces.
  • 关键词:Kayaking;ergometry;3D joint kinematics;electromyography;shoulder
国家哲学社会科学文献中心版权所有