首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:KLASIFIKASI HABITAT BENTIK BERBASIS OBJEK DENGAN ALGORITMA SUPPORT VECTOR MACHINES DAN DECISION TREE MENGGUNAKAN CITRA MULTISPEKTRAL SPOT-7 DI PULAU HARAPAN DAN PULAU KELAPA
  • 其他标题:CLASSIFICATION OF BENTHIC HABITAT BASED ON OBJECT WITH SUPPORT VECTOR MACHINES AND DECISION TREE ALGORITHM USING SPOT-7 MULTISPECTRAL IMAGERY IN HARAPAN AND KELAPA ISLAND
  • 本地全文:下载
  • 作者:Nico Wantona Prabowo ; Nico Wantona Prabowo ; Vincentius P. Siregar
  • 期刊名称:E-Journal Ilmu dan Teknologi Kelautan Tropis
  • 印刷版ISSN:2087-9423
  • 电子版ISSN:2085-6695
  • 出版年度:2018
  • 卷号:10
  • 期号:1
  • 页码:123-134
  • DOI:10.29244/jitkt.v10i1.21670
  • 语种:English
  • 出版社:Bogor Agricultural University
  • 摘要:The research of object based image classification (OBIA) with machine learning algorithm for high resolution image in Indonesia is still limited especially for coral reef mapping, therefore further research needed for comparison in method and application of algorithms as alternative of classification. This research aims to map benthic habitat based on multiscale classification using OBIA method with support vector machine and decision tree algorithm in Harapan Island and Kelapa Island, Kepulauan Seribu. Segmentation was performed using a multiresolution segmentation algorithm with a scale factor of 15. The OBIA method is applied to atmospheric corrected images with a predefined benthic habitat classification scheme. The overall accuracy of SVM and DT algorithm implementations are 76.68% and 60.62%, respectively. The Z statistic value analysis obtained from the application of two algorithms used is 2.23, where this value indicates that the classification with SVM algorithm is significantly different from the DT algorithm. This research suggest that the OBIA technique could be a promise approach for mapping benthic habitats.
  • 其他摘要:Teknik klasifikasi berbasis objek dengan algoritma machine learning SVM untuk citra resolusi tinggi di Indonesia sampai saat ini masih terbatas khususnya untuk pemetaan terumbu karang, oleh karena itu diperlukan kajian lebih lanjut mengenai perbandingan m
  • 关键词:OBIA; Harapan and Kelapa Island; segmentation; DT algorithm; SVM algorithm
  • 其他关键词:algoritma DT; algoritma SVM; OBIA; Pulau Harapan dan Pulau Kelapa; segmentasi
国家哲学社会科学文献中心版权所有