首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Diagnosis of Lung Disorder Using Immune Genetic Algorithm and Fuzzy logic to Handle Incertitude
  • 本地全文:下载
  • 作者:T.Illakiya ; O.Pandithurai ; V. Swetha
  • 期刊名称:Acta Graphica
  • 印刷版ISSN:0353-4707
  • 电子版ISSN:1848-3828
  • 出版年度:2017
  • 卷号:28
  • 期号:4
  • 页码:129-136
  • DOI:10.25027/agj2017.28.v28i4.100
  • 语种:English
  • 出版社:University of Zagreb, Faculty of Graphic Arts
  • 摘要:In this paper,we present an immune based fuzzy-logic approach for computer-aided diagnosis scheme in medical imaging.The scheme applies to lung CT images and to detect and classify lung nodules.Classification of lung tissue is a significant and challenging task in any computer aided diagnosis system.This paper presents a technique for classification of lung tissue from computed tomography of the lung using the Gaussian interval type-2 fuzzy logic system.The type-2 Gaussian membership functions (T2MFs) and their footprint of uncertainty (FOU) are tuned by immune,genetic algorithm,which is the combination of immune genetic algorithm (GA) and local exploration operator.An immune,genetic algorithm estimates the parameters of the type-2 fuzzy membership function (T2MF).By using immune,genetic algorithm,converging speed is increased.The proposed local exploration operator helps in finding the best Gaussian distribution curve of a particular feature which improves the efficiency and accuracy of the diagnosis system.
  • 关键词:Lung disorder;Immune Genetic algorithm;Classification;Type 2 fuzzy logic
国家哲学社会科学文献中心版权所有