摘要:Soy isoflavones (SIF) are a group of polyphenolic compounds with health benefits. However, application of SIF in functional foods is limited due to its poor aqueous solubility. SIF nanoparticles with different concentrations were prepared using polymerized goat milk whey protein (PGWP) as wall material. The goat milk whey protein was prepared from raw milk by membrane processing technology. The encapsulation efficiencies of all the nanoparticles were found to be greater than 70%. The nanoparticles showed larger particle size and lower zeta potential compared with the PGWP. Fourier Transform Infrared Spectroscopy indicated that the secondary structure of goat milk whey protein was changed after interacting with SIF, with transformation of α-helix and β-sheet to disordered structures. Fluorescence data indicated that interactions between SIF and PGWP decreased the fluorescence intensity. All nanoparticles had spherical microstructure revealed by Transmission Electron Microscope. Data indicated that PGWP may be a good carrier material for the delivery of SIF to improve its applications in functional foods.