首页    期刊浏览 2025年12月20日 星期六
登录注册

文章基本信息

  • 标题:Bayesian estimation of generalized partition of unity copulas
  • 本地全文:下载
  • 作者:Andreas Masuhr ; Mark Trede
  • 期刊名称:Dependence Modeling
  • 电子版ISSN:2300-2298
  • 出版年度:2020
  • 卷号:8
  • 期号:1
  • 页码:119-131
  • DOI:10.1515/demo-2020-0007
  • 出版社:Walter de Gruyter GmbH
  • 摘要:This paper proposes a Bayesian estimation algorithm to estimate Generalized Partition of Unity Copulas (GPUC), a class of nonparametric copulas recently introduced by [18]. The first approach is a random walk Metropolis-Hastings (RW-MH) algorithm, the second one is a random blocking random walk Metropolis-Hastings algorithm (RBRW-MH). Both approaches are Markov chain Monte Carlo methods and can cope with ˛at priors. We carry out simulation studies to determine and compare the efficiency of the algorithms. We present an empirical illustration where GPUCs are used to nonparametrically describe the dependence of exchange rate changes of the crypto-currencies Bitcoin and Ethereum.
  • 关键词:copulas ; partition-of-unity ; Bayesian estimation ; cryptocurrencies ; 62H05 ; 62H12 ; 62G07 ; 62P20 ; 91B05
国家哲学社会科学文献中心版权所有