首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A classification method for binary predictors combining similarity measures and mixture models
  • 本地全文:下载
  • 作者:Seydou N. Sylla ; Stéphane Girard ; Abdou Ka Diongue
  • 期刊名称:Dependence Modeling
  • 电子版ISSN:2300-2298
  • 出版年度:2015
  • 卷号:3
  • 期号:1
  • 页码:240-255
  • DOI:10.1515/demo-2015-0017
  • 出版社:Walter de Gruyter GmbH
  • 摘要:In this paper, a new supervised classification method dedicated to binary predictors is proposed.Its originality is to combine a model-based classification rule with similarity measures thanks to the introduction of new family of exponential kernels.Some links are established between existing similarity measures when applied to binary predictors.A new family of measures is also introduced to unify some of the existing literature.The performance of the new classification method is illustrated on two real datasets (verbal autopsy data and handwritten digit data) using 76 similarity measures.
  • 关键词:Mixture model ; binary predictors ; kernel method ; similarity measure
国家哲学社会科学文献中心版权所有