首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Sketch-Based Image Retrieval with Histogram of Oriented Gradients and Hierarchical Centroid Methods
  • 本地全文:下载
  • 作者:Viny Christanti Mawardi ; Yoferen Yoferen ; Stéphane Bressan
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:188
  • 页码:1-7
  • DOI:10.1051/e3sconf/202018800026
  • 出版社:EDP Sciences
  • 摘要:Searching images from digital image dataset can be done using sketch-based image retrieval that performs retrieval based on the similarity between dataset images and sketch image input. Preprocessing is done by using Canny Edge Detection to detect edges of dataset images. Feature extraction will be done using Histogram of Oriented Gradients and Hierarchical Centroid on the sketch image and all the preprocessed dataset images. The features distance between sketch image and all dataset images is calculated by Euclidean Distance. Dataset images used in the test consist of 10 classes. The test results show Histogram of Oriented Gradients, Hierarchical Centroid, and combination of both methods with low and high threshold of 0.05 and 0.5 have average precision and recall values of 90.8 % and 13.45 %, 70 % and 10.64 %, 91.4 % and 13.58 %. The average precision and recall values with low and high threshold of 0.01 and 0.1, 0.3 and 0.7 are 87.2 % and 13.19 %, 86.7 % and 12.57 %. Combination of the Histogram of Oriented Gradients and Hierarchical Centroid methods with low and high threshold of 0.05 and 0.5 produce better retrieval results than using the method individually or using other low and high threshold.
  • 其他关键词:Canny edge ; content-based image retrieval ; dataset image ; digital image processing ; sketch image
国家哲学社会科学文献中心版权所有