摘要:The compressed air from high-pressure compressor enters the proton exchange fuel cell and was discharged from the cathode after reacting. This part of the exhaust gas had a certain residual pressure. In order to study the effect of cathode exhaust gas residual pressure recovery on the efficiency of proton exchange membrane fuel cell system, this paper used Simulink software to establish a proton exchange membrane fuel cell exhaust gas recovery system model. In the model, the mass flow of supply air was controlled by controlling the air excess ratio . Under this condition, the work done by the exhaust gas on the turbine could account for 18% of the parasitic power consumption. The simulation results showed that this system could increase the system power by up to 13% compared with the energy recovery turbine system, which had good consistency, which was of great significance for PEMFC system design and exhaust gas recovery.
其他摘要:The compressed air from high-pressure compressor enters the proton exchange fuel cell and was discharged from the cathode after reacting. This part of the exhaust gas had a certain residual pressure. In order to study the effect of cathode exhaust gas residual pressure recovery on the efficiency of proton exchange membrane fuel cell system, this paper used Simulink software to establish a proton exchange membrane fuel cell exhaust gas recovery system model. In the model, the mass flow of supply air was controlled by controlling the air excess ratio Under this condition, the work done by the exhaust gas on the turbine could account for 18% of the parasitic power consumption. The simulation results showed that this system could increase the system power by up to 13% compared with the energy recovery turbine system, which had good consistency, which was of great significance for PEMFC system design and exhaust gas recovery.