摘要:The purpose of this work was to study the gas yield variation resulted from the cherry wood gasification with air using a lab-scale rotary kiln gasifier. The feedstock was continuously fed into the preheated reactor at 600℃, in co-current configuration, using atmospheric air as a gasifying agent. The results indicate the importance of oxidation reaction control, through the feeding flow rates of biomass and air and the reactants mixing rate. From the experiment, the hydrogen yields were about 2-4%, while the carbon monoxide varied between 8-21%. Additionally, the paper provides process observations based on the continuous monitoring of gas composition. The specific flow rates of substances and installation operating conditions were linked to process run through syngas composition.
其他摘要:The purpose of this work was to study the gas yield variation resulted from the cherry wood gasification with air using a lab-scale rotary kiln gasifier. The feedstock was continuously fed into the preheated reactor at 600°C, in co-current configuration, using atmospheric air as a gasifying agent. The results indicate the importance of oxidation reaction control, through the feeding flow rates of biomass and air and the reactants mixing rate. From the experiment, the hydrogen yields were about 2-4%, while the carbon monoxide varied between 8-21%. Additionally, the paper provides process observations based on the continuous monitoring of gas composition. The specific flow rates of substances and installation operating conditions were linked to process run through syngas composition.