摘要:During the experiments, four spherical flasks with n-tetradecane with a total mass of 0.344 kg were placed in a test container inside which an aqueous solution of propylene glycol with a mass concentration of 50% and an initial temperature of 25 °C was circulating. As a result of studies, the values of heat flows at different time intervals during the solid-liquid phase transition of n-tetradecane were obtained. Based on the modeling of the processes, the distribution of temperature and velocity of the heat carrier in the test container as well as the values of the local heat transfer coefficients on the surface of the flasks were established. Numerical calculations of the process of phase transition being studied according to the authors' model were also performed. Numerical calculations of the process under study have been performed using the authors' model. A satisfactory convergence of the experimental and calculated values of the heat flow has been obtained. The results can be used in the development of thermal energy accumulators with n-tetradecane.
其他摘要:During the experiments, four spherical flasks with n-tetradecane with a total mass of 0.344 kg were placed in a test container inside which an aqueous solution of propylene glycol with a mass concentration of 50% and an initial temperature of 25 °C was circulating. As a result of studies, the values of heat flows at different time intervals during the solid-liquid phase transition of n-tetradecane were obtained. Based on the modeling of the processes, the distribution of temperature and velocity of the heat carrier in the test container as well as the values of the local heat transfer coefficients on the surface of the flasks were established. Numerical calculations of the process of phase transition being studied according to the authors’ model were also performed. Numerical calculations of the process under study have been performed using the authors’ model. A satisfactory convergence of the experimental and calculated values of the heat flow has been obtained. The results can be used in the development of thermal energy accumulators with n-tetradecane.