首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Development and Performance Evaluation of a Computer Program Based on Neural Network Mathematical Models for Forecasting By- Product Yield
  • 本地全文:下载
  • 作者:Yelena Vasileva ; Aleksandr Nevedrov ; Sergey Subbotin
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:174
  • 页码:1-7
  • DOI:10.1051/e3sconf/202017403023
  • 出版社:EDP Sciences
  • 摘要:Process performance of coking plants are based on data on the yield of by-products of coking coal and their quality, therefore, much attention is paid to the issues of their analysis. In view of the complexity and insufficient knowledge of the relationship between these parameters, mathematical modeling of this dependence using neural networks is of great interest. Based on a mathematical analysis of experimental data on the quality indicators of coal, coal concentrates and the by-product yield, neural network mathematical models have been developed to forecast the parameters under study. The neural network is based on the Ward’s network. Based on the results of the research, the application “Intelligent Information System for Forecasting By-product Yield” was created, which implements neural networks [1]. The relative forecasting error for the parameter “coke” is 0.64±0.23%, “coal tar” is 19.53±5.25%, “crude benzene” is 10.02±2.83%, and “coke gas” is 5.11±1.34%. A comparative analysis of the data obtained using the developed design method is carried out, with the simulation results using existing methods, as well as with the production values of by-products yield.
国家哲学社会科学文献中心版权所有