标题:Resilience of Canadian homes and small buildings to the effects of climate change - Risk of deterioration due to condensation within wall assemblies
摘要:The objective of this study was to assess the potential effects of climate change on the moisture performance and durability of typical Canadian wood-frame walls using hygrothermal simulations, with a particular attention to the risk of condensation. To reduce the risk of condensation, the National Building Code of Canada (NBCC) recommends a maximum air leakage rate of 0.10L/sm2 at 75 Pa in buildings with interior relative humidity not greater than 55%. This leakage rate was evaluated in five cities across Canada for a wood-frame wall having brick cladding, with and without outdoor insulation and both walls meeting the minimum insulation requirements given in NBCC. It is found that the risk of condensation will be reduced in the future in all 5 cities analysed. The reduction in the risk of condensation is slightly higher for the wall with no exterior insulation than for the wall with exterior insulation. This reduction in the risk of condensation means that the limit of 0.10L/(sm2) for building having a warm side relative humidity of less than 55% may be reconsidered in the future. There may however be some risks associated with the increase in rain in some cities.
其他摘要:The objective of this study was to assess the potential effects of climate change on the moisture performance and durability of typical Canadian wood-frame walls using hygrothermal simulations, with a particular attention to the risk of condensation. To reduce the risk of condensation, the National Building Code of Canada (NBCC) recommends a maximum air leakage rate of 0.10L/sm2 at 75 Pa in buildings with interior relative humidity not greater than 55%. This leakage rate was evaluated in five cities across Canada for a wood-frame wall having brick cladding, with and without outdoor insulation and both walls meeting the minimum insulation requirements given in NBCC. It is found that the risk of condensation will be reduced in the future in all 5 cities analysed. The reduction in the risk of condensation is slightly higher for the wall with no exterior insulation than for the wall with exterior insulation. This reduction in the risk of condensation means that the limit of 0.10L/(sm2) for building having a warm side relative humidity of less than 55% may be reconsidered in the future. There may however be some risks associated with the increase in rain in some cities.