首页    期刊浏览 2025年05月26日 星期一
登录注册

文章基本信息

  • 标题:Design optimization of a building attached sunspace through experimental monitoring and dynamic modelling
  • 本地全文:下载
  • 作者:Martina Guasco ; Martina Orlanno ; Chiara Piccardo
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:172
  • 页码:1-8
  • DOI:10.1051/e3sconf/202017203010
  • 出版社:EDP Sciences
  • 摘要:In Europe, buildings are responsible for 40% of the energy consumption and 36% of the CO2 emissions. Space heating largely contributes to these energy and climate impacts. Passive solar heating systems, as sunspaces, can contribute to increase solar heat gains, reducing space heating energy demand and the related use of fossil fuels. Careful design and local climatic considerations are essential to optimize the performance of sunspaces. In this study experimental field monitoring, dynamic modelling and steady-state methods are applied to analyse the thermal behaviour of an attached sunspace in an Italian existing building, as well as its potential contribution to the building’s energy balance. Design modifications for improved thermal performance of the sunspace are investigated. The results show overall agreement between the dynamic modellings and experimental monitoring of the sunspace and indicate that the sunspace’s indoor air temperature and hence solar energy gains are significantly increased with the design modifications, in contrast to the existing configuration. Maximum temperatures between 44 and 48 °C were observed for the existing and a modified alternative of the analysed sunspace. The dynamic simulation model and design modifications presented in this study can serve as basis for assessment and optimal configurations of sunspaces in their design stage.
  • 其他摘要:In Europe, buildings are responsible for 40% of the energy consumption and 36% of the CO2 emissions. Space heating largely contributes to these energy and climate impacts. Passive solar heating systems, as sunspaces, can contribute to increase solar heat gains, reducing space heating energy demand and the related use of fossil fuels. Careful design and local climatic considerations are essential to optimize the performance of sunspaces. In this study experimental field monitoring, dynamic modelling and steady-state methods are applied to analyse the thermal behaviour of an attached sunspace in an Italian existing building, as well as its potential contribution to the building’s energy balance. Design modifications for improved thermal performance of the sunspace are investigated. The results show overall agreement between the dynamic modellings and experimental monitoring of the sunspace and indicate that the sunspace’s indoor air temperature and hence solar energy gains are significantly increased with the design modifications, in contrast to the existing configuration. Maximum temperatures between 44 and 48 °C were observed for the existing and a modified alternative of the analysed sunspace. The dynamic simulation model and design modifications presented in this study can serve as basis for assessment and optimal configurations of sunspaces in their design stage.
国家哲学社会科学文献中心版权所有