摘要:In this study we analysed the climatic conditions for infiltration estimation, different calculation methods and infiltration impact on heat load for heating systems dimensioning. To determine the wind conditions at low air temperatures of the coastal- and inland climatic zones in Estonia, 42 years of climatic data for Tallinn and Tartu were investigated. Calculation models with detailed air leakages were constructed of a single and two-storey detached house using dynamic simulation software IDA ICE. Simulations were carried out with the constructed calculation models, simulating various wind and sheltering conditions to determine the heating load of the buildings under measured wind conditions at the design external air temperatures. The simulation results were compared with results calculated with European Standard EN 12831:2017, methodology given in the Estonian regulation for calculating energy performance of buildings and with simulations using the default settings in IDA ICE based on the ASHRAE design day conditions. The percentage of heat losses caused by infiltration was found as 13-16% of all heat losses for the studied buildings. Simulations with historical climate periods showed that even in windy weather conditions the heating system dimensioned by the methods analysed may not be able to provide the required indoor air temperature. Analysis using the coldest and windiest periods showed that when systems are dimensioned by the studied methods, the highest decline in indoor air temperature occurs on the windiest day and not on the coldest day. The impact of high wind speeds and low sheltering conditions resulted up to 50% of all heat losses.