摘要:Building energy efficiency, construction cost, life cycle cost, and carbon emission are the best interests of users, owners and different vendors. This study assessed the energy performance (EP) related investment and operational energy cost of Kouvola housing fair NZEB. Data from 12 new detached houses were collected, which fulfilled the energy certificate class of B according to the Finnish nearly zero energy building (NZEB) regulation. Besides, emission from building materials, construction and energy use during 50 years of one model building were estimated, aiming to compare the life cycle emission from wooden building, insulated concrete building, blockhouse and log house. The results showed that the total construction cost was independent to EP-value and even had a slightly negative correlation to the EP-value. The average EP-value of 12 buildings was slightly higher than that of buildings in Tampere housing fair 2012, which showed no improvement of nearly zero energy building (NZEB) guidelines since 2012. Energy performance related cost dependency in specific cost categories was shown so that EP-value improvement by 40 units increased less than 2% of construction cost. Electricity had a significant contribution to CO2 emission while local district heating was based on renewables. Material emissions contribution was 32-48% of total emissions, and wooden buildings showed lower carbon footprint compared to other building structures.
其他摘要:Building energy efficiency, construction cost, life cycle cost, and carbon emission are the best interests of users, owners and different vendors. This study assessed the energy performance (EP) related investment and operational energy cost of Kouvola housing fair NZEB. Data from 12 new detached houses were collected, which fulfilled the energy certificate class of B according to the Finnish nearly zero energy building (NZEB) regulation. Besides, emission from building materials, construction and energy use during 50 years of one model building were estimated, aiming to compare the life cycle emission from wooden building, insulated concrete building, blockhouse and log house. The results showed that the total construction cost was independent to EP-value and even had a slightly negative correlation to the EP-value. The average EP-value of 12 buildings was slightly higher than that of buildings in Tampere housing fair 2012, which showed no improvement of nearly zero energy building (NZEB) guidelines since 2012. Energy performance related cost dependency in specific cost categories was shown so that EP-value improvement by 40 units increased less than 2% of construction cost. Electricity had a significant contribution to CO2 emission while local district heating was based on renewables. Material emissions contribution was 32-48% of total emissions, and wooden buildings showed lower carbon footprint compared to other building structures.