首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Design and monitoring of energy-active facade module
  • 本地全文:下载
  • 作者:Nikola Pokorny ; Tomas Matuska ; Vladimir Jirka
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:172
  • 页码:1-6
  • DOI:10.1051/e3sconf/202017224005
  • 出版社:EDP Sciences
  • 摘要:Testing of two facade modules under outdoor climatic conditions of Central Europe has been performed for more than two years. The paper analyses the results of long-term monitoring and shows potential benefits of prismatic glazing and photovoltaic-thermal (PVT) collectors integrated into one component. The prismatic glazing reflects beam radiation during summer period and transmits it during the winter period. During summer month solar irradiation transmitted through the prismatic glazing can be about 44 % lower compared to conventional triple glazing. Glazed PVT collector generates heat and electricity simultaneously. PVT collector integrated in the façade module can achieve solar yield during summer 58 kWh/m2.month in heat and 6,3 kWh/m2.month in electricity.
  • 其他摘要:Testing of two facade modules under outdoor climatic conditions of Central Europe has been performed for more than two years. The paper analyses the results of long-term monitoring and shows potential benefits of prismatic glazing and photovoltaic-thermal (PVT) collectors integrated into one component. The prismatic glazing reflects beam radiation during summer period and transmits it during the winter period. During summer month solar irradiation transmitted through the prismatic glazing can be about 44 % lower compared to conventional triple glazing. Glazed PVT collector generates heat and electricity simultaneously. PVT collector integrated in the façade module can achieve solar yield during summer 58 kWh/m2.month in heat and 6,3 kWh/m2.month in electricity.
国家哲学社会科学文献中心版权所有