首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Parametric Energy Simulations of a Nordic Detached House Heated by a Wood Stove
  • 本地全文:下载
  • 作者:Martin Thalfeldt ; Anders Skare ; Laurent Georges
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:172
  • 页码:1-7
  • DOI:10.1051/e3sconf/202017225007
  • 出版社:EDP Sciences
  • 摘要:Wood stoves are widely used in Nordic countries. They offer a good opportunity to use biomass for space-heating and to reduce the peak power of all-electric buildings. However, wood stoves are highly concentrated heat sources with limited control compared to other typical heat emission systems, which makes the assessment of their impact challenging. This study introduces a simulation-based parametric study of a detached house equipped with a wood stove located in Oslo, Norway. The respective impact of different building parameters and stove nominal powers on the building performance is illustrated. The analysis shows that the annual total space-heating needs (i.e. the sum of the base load, modelled as ideal heaters representing the electrical radiators, the stove and the heating of the ventilation supply air) increased significantly due to the higher average indoor temperature. The resulting heat emission efficiency of the stove ranged between 66% and 90%. However, the stoves covered between 28% and 62% of the total space-heating needs. When using the stove, the maximum hourly-averaged power for the electrical radiators decreased between 5 W/m2 and 31 W/m2 during the peak hours of the electricity grid. The building thermal mass, insulation level, as well as the combination of internal door position with the bedroom temperature setpoint, had a significant impact on the calculated values. Finally, the study revealed that the occupant behaviour modelling should be improved to better capture the wood stove impact on the energy performance using building simulations.
  • 其他摘要:Wood stoves are widely used in Nordic countries. They offer a good opportunity to use biomass for space-heating and to reduce the peak power of all-electric buildings. However, wood stoves are highly concentrated heat sources with limited control compared to other typical heat emission systems, which makes the assessment of their impact challenging. This study introduces a simulation-based parametric study of a detached house equipped with a wood stove located in Oslo, Norway. The respective impact of different building parameters and stove nominal powers on the building performance is illustrated. The analysis shows that the annual total space-heating needs (i.e. the sum of the base load, modelled as ideal heaters representing the electrical radiators, the stove and the heating of the ventilation supply air) increased significantly due to the higher average indoor temperature. The resulting heat emission efficiency of the stove ranged between 66% and 90%. However, the stoves covered between 28% and 62% of the total space-heating needs. When using the stove, the maximum hourly-averaged power for the electrical radiators decreased between 5 W/m2 and 31 W/m2 during the peak hours of the electricity grid. The building thermal mass, insulation level, as well as the combination of internal door position with the bedroom temperature setpoint, had a significant impact on the calculated values. Finally, the study revealed that the occupant behaviour modelling should be improved to better capture the wood stove impact on the energy performance using building simulations.
国家哲学社会科学文献中心版权所有