首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Experimental Analysis of different shaped ribs on heat transfer and fluid flow characteristics
  • 本地全文:下载
  • 作者:Sandeep S Kore ; Sunil V. Dingare ; Satish Chinchanikar
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:170
  • 页码:1-4
  • DOI:10.1051/e3sconf/202017001019
  • 出版社:EDP Sciences
  • 摘要:There are number of applications such as gas turbines, solar air heating, electronics cooling and heat exchangers, where internal cooling passage is observed. For heat transfer augmentation inside these cooling passages different techniques are used like dimpled surface, wings and ribs. Ribs are used in most of the devices for internal cooling. The ribs disturb the boundary layer and increase the turbulent kinetic energy which enhances the heat transfer rate. Most of the researchers concentrate on square and rectangular shaped ribs. The cross section of the rib plays important role in the production of flow field. The shape of ribs affects on boundary layer separation, attachment and hot spots created. In the present paper heat transfer and fluid flow characteristics from rib roughened rectangular duct with different shapes of ribs were investigated. The experimental set up consists of rectangular channel of aspect ratio 4. The pitch to width ratio was varied as 5, 7.5 and 10 respectively. The Reynolds number was varied as 6000 to 30000. The ribs used for the investigations were square, house and boot shaped. From the investigations it is observed that boot shaped rib is having higher thermal performance than other two geometries.
  • 其他摘要:There are number of applications such as gas turbines, solar air heating, electronics cooling and heat exchangers, where internal cooling passage is observed. For heat transfer augmentation inside these cooling passages different techniques are used like dimpled surface, wings and ribs. Ribs are used in most of the devices for internal cooling. The ribs disturb the boundary layer and increase the turbulent kinetic energy which enhances the heat transfer rate. Most of the researchers concentrate on square and rectangular shaped ribs. The cross section of the rib plays important role in the production of flow field. The shape of ribs affects on boundary layer separation, attachment and hot spots created. In the present paper heat transfer and fluid flow characteristics from rib roughened rectangular duct with different shapes of ribs were investigated. The experimental set up consists of rectangular channel of aspect ratio 4. The pitch to width ratio was varied as 5, 7.5 and 10 respectively. The Reynolds number was varied as 6000 to 30000. The ribs used for the investigations were square, house and boot shaped. From the investigations it is observed that boot shaped rib is having higher thermal performance than other two geometries
国家哲学社会科学文献中心版权所有