摘要:The ensemble Kalman filter (EnKF) is a widely used data assimilation method in soil hydrology. However, underestimation of the modeling errors and of the sampling errors may cause systematic reduction of state variances and rejection of the observations. Inflation methods are used to alleviate this phenomenon. Here, we suggest a novel inflation method based on confidence intervals constructed using the collected ensemble of the measurements. The proposed method is illustrated via two synthetic examples of a three‐layer soil with (i) precipitation and evaporation boundary condition and (ii) irrigation boundary condition. We present a comparison of two existing inflation methods and discuss the advantages and limitations of the proposed method. Basically, the suggested method behavior is superior to the behavior of the existing methods.