摘要:The magneto-resistive magnetometer (MRM) of the Block of Central University (BCU) payload onboard the Tatiana-2 satellite is made of anisotropic magneto-resistive (AMR) sensor chips, which have appealing features of small size (10 × 15 × 7 mm 3 ), light weight (2 grams) and low power consumption (100 mW). The small MRM is packaged together with other instrument/subsystems of the BCU into a 1.6 kg payload box for convenient installation. In this report, we present the design, calibration, and flight data analysis of the MRM. In particular, the detailed methods of pre-flight calibrations are described. The calibrated data revealed typical patterns of the global geo-magnetic field structure and of field-aligned current (FAC) distribution in the high latitude ionosphere, though the MRM of BCU only has a resolution of 24 nT and a sampling rate of 2.22 Hz. Moreover, the current density derived from our magnetic field measurements are about 2 and 3 μA m -2 , respectively, for downward and upward FAC, which are comparable to those typically observed at auroral latitudes during a quiet geomagnetic condition.
关键词:Tatiana 2; Ionosphere; Magneto resistive magnetometer; AMR sensor; Pre flight calibration; Field aligned current; Taiwan;