首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Investigating Near Surface S-Wave Velocity Properties Using Ambient Noise in Southwestern Taiwan
  • 本地全文:下载
  • 作者:Chun-Hsiang Kuo ; Kuo-Liang Wen ; Che-Min Lin
  • 期刊名称:Terrestrial Atmospheric and Oceanic Sciences
  • 印刷版ISSN:1017-0839
  • 出版年度:2015
  • 卷号:26
  • 期号:2-2
  • 页码:205-210
  • DOI:10.3319/TAO.2014.12.02.05(EOSI)
  • 出版社:Chinese Geoscience Union
  • 摘要:Ambient noise is typically used to estimate seismic site effects and velocity profiles instead of earthquake recordings, especially in areas with limited seismic data. The dominant Horizontal to Vertical Spectral Ratio (HVSR) frequency of ambi- ent noise is correlated to Vs30, which is the average S-wave velocity in the top 30 m. Vs30 is a widely used parameter for defining seismic amplification in earthquake engineering. HVSR can detect the vertical discontinuity of velocities, that is, the interfaces between hard bedrock and soft sediments. In southwestern Taiwan most strong motion stations are located in the plains and show a dominant frequency lower than 3 Hz. Several stations near the coast have low dominant frequencies of less than 1 Hz. The dominant frequencies are higher than 4 Hz at piedmont stations. The stations in the mountains with dominant frequencies over 8 Hz are typically located on very hard sites. This study analyzed the HVSR characteristics under different seismic site conditions considering the Vs30 from previous study (Kuo et al. 2012). The result implies that HVSRs are a better tool than Vs30 to classify the sites where bedrock is deeper than 30 m. Furthermore, we found a linear correlation between Vs30 and dominant HVSR frequency which could be used as a proxy of Vs30. The Vs30 map in this area was derived using the Engineering Geological Database for Taiwan Strong Motion Instrumentation Program (EGDT). The comparable distribu- tion pattern between the dominant frequency and Vs30 demonstrate that HVSR can recognize S-wave velocity properties at the shallow subsurface.
  • 关键词:Ambient noise; Dominant frequency; EGDT; HVSR; Vs30;
国家哲学社会科学文献中心版权所有