首页    期刊浏览 2024年07月21日 星期日
登录注册

文章基本信息

  • 标题:Growth-controlling mechanisms on heterotrophic bacteria in the South China Sea shelf: Summer and Winter patterns
  • 本地全文:下载
  • 作者:Eleanor Austria ; Chao-Chen Lai ; Chia-Ying Ko
  • 期刊名称:Terrestrial Atmospheric and Oceanic Sciences
  • 印刷版ISSN:1017-0839
  • 出版年度:2018
  • 卷号:29
  • 期号:4
  • 页码:441-453
  • DOI:10.3319/TAO.2018.01.19.01
  • 出版社:Chinese Geoscience Union
  • 摘要:Mechanisms in controlling the growth of heterotrophic bacteria have seldom been explored in the tropical South China Sea (SCS). This study reports the tempo-spatial distribution patterns and the controlling mechanisms of bacterial biomass (BB), production (BP), and specific growth rate (Bμ) from one summer (Jun 2010; 4 transects) and two winter (January and December 2011; one transect each) cruises along the northern SCS-shelf. In summer, all three bacterial variables showed strong gradients with greater readings at the inner-shelf then decreasing seaward. The positive correlations of bacterial production rate (BP) and bacterial specific growth rate (Bμ), with primary production (PP), chlorophyll-a, and dissolved organic carbon observed in summer indicate a high possibility of bottom-up (substrate supply) control. Positive bacterial temperature response was observed in the inner to mid-shelf area in winter. There, Bμ changed proportionally with temperature up to ca. 22°C. The Q 10 (the increase of reaction rate for a temperature rise of 10°C) for Bμ was ~4.0, which was in the range reported by coastal studies. Very high BP/PP ratios (summer average: 89 ± 92%; winter average: 131 ± 88%) indicated bacteria carbon demand relied heavily on allochthonous organic carbon sources such as river input and re-suspension processes, and that the SCS-shelf might be net heterotrophic in these two seasons. In winter, BP/PP ratios changed positively with temperature in areas inside the mid-shelf, suggesting that the coastal zone might become a stronger CO 2 source during cold season under a warming climate, if anthropogenic loadings of inorganic nutrients and organic matter remain high in the future.
  • 关键词:Bacteria; Continental shelf; DOC; Microbial loop; Primary production; South China Sea; Tropical shelf sea;
国家哲学社会科学文献中心版权所有