首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Mantle wedge serpentinization effects on slab dips
  • 本地全文:下载
  • 作者:Eh Tan
  • 期刊名称:Terrestrial Atmospheric and Oceanic Sciences
  • 印刷版ISSN:1017-0839
  • 出版年度:2017
  • 卷号:28
  • 期号:3
  • 页码:259-269
  • DOI:10.3319/TAO.2016.09.21.01
  • 出版社:Chinese Geoscience Union
  • 摘要:The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.
  • 关键词:Subduction; Serpentinization; Mantle wedge;
国家哲学社会科学文献中心版权所有