首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Present Simulation and Future Typhoon Activity Projection over Western North Pacific and Taiwan/East Coast of China in 20-km HiRAM Climate Model
  • 本地全文:下载
  • 作者:Chih-Hua Tsou ; Pei-Yu Huang ; Chia-Ying Tu
  • 期刊名称:Terrestrial Atmospheric and Oceanic Sciences
  • 印刷版ISSN:1017-0839
  • 出版年度:2016
  • 卷号:27
  • 期号:5
  • 页码:687-703
  • DOI:10.3319/TAO.2016.06.13.04
  • 出版社:Chinese Geoscience Union
  • 摘要:A High Resolution Atmospheric Model (HiRAM) at 20-km resolution is adopted to simulate tropical storm (TS) activity over the western North Pacific (WNP) and Taiwan/East Coast of China (TWCN) at the present time (1979 - 2003) and future climate (2075 - 2099) under the Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5) representative concentration pathway (RCP) 8.5 scenarios. The results show that in contrast to TS simulation activities in most of the low-resolution climate models, TS activities except intensity over the WNP and TWCN region are well simulated by HiRAM at 20-km resolution. The linkage between large-scale environments and TS genesis simulated by HiRAM are dramatically superior to those in low-resolution fifth Coupled Model Intercomparison Project (CMIP5) models. During 2075 - 2099, both TS genesis numbers and TS frequency over the WNP and TWCN are projected to decrease consistent with the IPCC AR5 report. However, the rate of decrease (49%) is much greater than that projected in IPCC AR5. The decrease in TC genesis numbers under global warming is primarily attributed to the reduction in mid-level relative humidity and large-scale ascending motion, despite the warmer sea surface temperature (SST) providing more favorable conditions for TS formation. TS intensity and the maximum precipitation rate are projected to increase under global warming. At the end of the 21 st century, the mean precipitation rate within 200 km of TS storm center over the TWCN region is projected to increase by 54%.
  • 关键词:Tropical storm; High Resolution Atmospheric Model (HiRAM); Future projection; Global warming;
国家哲学社会科学文献中心版权所有