摘要:To quantify the spatial and temporal variability in the snow pack, field measurements were carried out during four summers in Dronning Maud Land, Antarctica. Data from a 310-km-long transect revealed the largest horizontal gradients in snow density, temperature, and hardness in the escarpment region. On the local scale, day-to-day temporal variability dominated the standard deviation of snow temperature, while the diurnal cycle was of second significance, and horizontal variability on the scale of 0.4 to 10 m was least important. In the uppermost 0.2 m, the snow temperature was correlated with the air temperature over the previous 6–12 h, whereas at the depths of 0.3 to 0.5 m the most important time scale was 3 days. Cloud cover and radiative fluxes affected the snow temperature in the uppermost 0.30 m and the snow density in the uppermost 0.10 m. Both on the intra-pit and transect scales, the ratio of horizontal to temporal variability increased with depth. The horizontal standard deviation of snow density increased rapidly between the scales of 0.4 and 2 m, and more gradually from 10 to 100 m. Inter-annual variations in snow temperature and density were due to inter-annual differences in air temperature and the timing of the precipitation events.