首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Characterization of L-band synthetic aperture radar (SAR) backscatter from floating and grounded thermokarst lake ice in Arctic Alaska
  • 本地全文:下载
  • 作者:M. Engram ; K. W. Anthony ; F. J. Meyer
  • 期刊名称:The Cryosphere
  • 印刷版ISSN:1994-0416
  • 电子版ISSN:1994-0424
  • 出版年度:2013
  • 卷号:7
  • 期号:6
  • 页码:1741-1752
  • DOI:10.5194/tc-7-1741-2013
  • 出版社:Copernicus Publications
  • 摘要:Radar remote sensing is a well-established method to discriminate lakes retaining liquid-phase water beneath winter ice cover from those that do not. L-band (23.6 cm wavelength) airborne radar showed great promise in the 1970s, but spaceborne synthetic aperture radar (SAR) studies have focused on C-band (5.6 cm) SAR to classify lake ice with no further attention to L-band SAR for this purpose. Here, we examined calibrated L-band single- and quadrature-polarized SAR returns from floating and grounded lake ice in two regions of Alaska: the northern Seward Peninsula (NSP) where methane ebullition is common in lakes and the Arctic Coastal Plain (ACP) where ebullition is relatively rare. We found average backscatter intensities of −13 dB and −16 dB for late winter floating ice on the NSP and ACP, respectively, and −19 dB for grounded ice in both regions. Polarimetric analysis revealed that the mechanism of L-band SAR backscatter from floating ice is primarily roughness at the ice–water interface. L-band SAR showed less contrast between floating and grounded lake ice than C-band; however, since L-band is sensitive to ebullition bubbles trapped by lake ice (bubbles increase backscatter), this study helps elucidate potential confounding factors of grounded ice in methane studies using SAR.
国家哲学社会科学文献中心版权所有