首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Liquid water content in ice estimated through a full-depth ground radar profile and borehole measurements in western Greenland
  • 本地全文:下载
  • 作者:Joel Brown ; Joel Harper ; Neil Humphrey
  • 期刊名称:The Cryosphere
  • 印刷版ISSN:1994-0416
  • 电子版ISSN:1994-0424
  • 出版年度:2017
  • 卷号:11
  • 期号:1
  • 页码:669-679
  • DOI:10.5194/tc-11-669-2017
  • 出版社:Copernicus Publications
  • 摘要:Liquid water content (wetness) within glacier ice is known to strongly control ice viscosity and ice deformation processes. Little is known about wetness of ice on the outer flanks of the Greenland Ice Sheet, where a temperate layer of basal ice exists. This study integrates borehole and radar surveys collected in June 2012 to provide direct estimates of englacial ice wetness in the ablation zone of western Greenland. We estimate electromagnetic propagation velocity of the ice body by inverting reflection travel times from radar data. Our inversion is constrained by ice thickness measured in boreholes and by positioning of a temperate–cold ice boundary identified in boreholes. Electromagnetic propagation velocities are consistent with a depth-averaged wetness of ∼  0.5–1.1 %. The inversion indicates that wetness within the ice varies from  <  0.1 % in an upper cold layer to  ∼  2.9–4.6 % in a 130–150 m thick temperate layer located above the glacier bed. Such high wetness should yield high rates of shear strain, which need to be accounted for in glacial flow models that focus on the ablation zone of Greenland. This high wetness also needs to be accounted for when determining ice thickness from radar measurements.
国家哲学社会科学文献中心版权所有