首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015
  • 本地全文:下载
  • 作者:Jinyang Du ; John S. Kimball ; Claude Duguay
  • 期刊名称:The Cryosphere
  • 印刷版ISSN:1994-0416
  • 电子版ISSN:1994-0424
  • 出版年度:2017
  • 卷号:11
  • 期号:1
  • 页码:47-63
  • DOI:10.5194/tc-11-47-2017
  • 出版社:Copernicus Publications
  • 摘要:A new automated method enabling consistent satellite assessment of seasonal lake ice phenology at 5 km resolution was developed for all lake pixels (water coverage  ≥  90 %) in the Northern Hemisphere using 36.5 GHz H-polarized brightness temperature (Tb) observations from the Advanced Microwave Scanning Radiometer for EOS and Advanced Microwave Scanning Radiometer 2 (AMSR-E/2) sensors. The lake phenology metrics include seasonal timing and duration of annual ice cover. A moving t test (MTT) algorithm allows for automated lake ice retrievals with daily temporal fidelity and 5 km resolution gridding. The resulting ice phenology record shows strong agreement with available ground-based observations from the Global Lake and River Ice Phenology Database (95.4 % temporal agreement) and favorable correlations ® with alternative ice phenology records from the Interactive Multisensor Snow and Ice Mapping System (R = 0.84 for water clear of ice (WCI) dates; R = 0.41 for complete freeze over (CFO) dates) and Canadian Ice Service (R = 0.86 for WCI dates; R = 0.69 for CFO dates). Analysis of the resulting 12-year (2002–2015) AMSR-E/2 ice record indicates increasingly shorter ice cover duration for 43 out of 71 (60.6 %) Northern Hemisphere lakes examined, with significant (p  <  0.05) regional trends toward earlier ice melting for only five lakes. Higher-latitude lakes reveal more widespread and larger trends toward shorter ice cover duration than lower-latitude lakes, consistent with enhanced polar warming. This study documents a new satellite-based approach for rapid assessment and regional monitoring of seasonal ice cover changes over large lakes, with resulting accuracy suitable for global change studies.
国家哲学社会科学文献中心版权所有