摘要:400 m yr−1). Under our time-transgressive interpretation, the lateral spacing of the observed eskers provides a true measure of subglacial conduit spacing for testing mathematical models of subglacial hydrology. Esker beads also record the volume of sediment deposited from conduits in each melt season, thus providing a minimum bound on annual sediment fluxes, which is in the range of 103–104 m3 yr−1 in each 6–10 km wide subglacial conduit catchment. We suggest that the prevalence of esker beads across this predominantly marine-terminating sector of the Laurentide Ice Sheet is a result of sediment fluxes that were unable to backfill conduits at a rate faster than ice-margin retreat. Conversely, we hypothesise that esker ridges form when sediment backfilling of the subglacial conduit outpaced retreat, resulting in headward esker growth close to but behind the margin. The implication, in accordance with recent modelling results, is that eskers in general record a composite signature of ice-marginal drainage rather than a temporal snapshot of ice-sheet-wide subglacial drainage.