It is unclear if applying larger or more symmetrical pedal forces leads to better performance in cycling. The aims of this study were to assess the relationship between pedal force production and performance in a cycling time trial and to evaluate the relationship between asymmetries in pedal force production and performance. Fifteen competitive cyclists/triathletes performed a 20 km cycling time trial on a cycle trainer while bilateral forces applied to the pedals were recorded along with total time. Total forces applied to the pedals were computed and converted into dominant and non-dominant forces using a leg preference inventory. Pedal force asymmetries ranged from 43% (in favour of the dominant limb) to 34% (in favour of the non-dominant limb). The relationship between total pedal force (averaged from both pedals) and performance time was small (r=-.32, effect size=.66) as well as the association between the asymmetry indices and performance time (r=.01, effect size=.06). In conclusion, applying large forces on the pedals and balancing pedal force application between the dominant and non-dominant limbs did not lead to better performance in this cycling time trial.