首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:A dataset of 30 m annual vegetation phenology indicators (1985–2015) in urban areas of the conterminous United States
  • 本地全文:下载
  • 作者:Xuecao Li ; Yuyu Zhou ; Lin Meng
  • 期刊名称:Earth System Science Data (ESSD)
  • 印刷版ISSN:1866-3508
  • 电子版ISSN:1866-3516
  • 出版年度:2019
  • 卷号:11
  • 期号:2
  • 页码:881-894
  • DOI:10.5194/essd-11-881-2019
  • 出版社:Copernicus
  • 摘要:Medium-resolution satellite observations show great potential for characterizing seasonal and annual dynamics of vegetation phenology in urban domains from local to regional and global scales. However, most previous studies were conducted using coarse-resolution data, which are inadequate for characterizing the spatiotemporal dynamics of vegetation phenology in urban domains. In this study, we produced an annual vegetation phenology dataset in urban ecosystems for the conterminous United States (US), using all available Landsat images on the Google Earth Engine (GEE) platform. First, we characterized the long-term mean seasonal pattern of phenology indicators of the start of season (SOS) and the end of season (EOS), using a double logistic model. Then, we identified the annual variability of these two phenology indicators by measuring the difference of dates when the vegetation index in a specific year reaches the same magnitude as its long-term mean. The derived phenology indicators agree well with in situ observations from the PhenoCam network and Harvard Forest. Comparing with results derived from the moderate-resolution imaging spectroradiometer (MODIS) data, our Landsat-derived phenology indicators can provide more spatial details. Also, we found the temporal trends of phenology indicators (e.g., SOS) derived from Landsat and MODIS are consistent overall, but the Landsat-derived results from 1985 offer a longer temporal span compared to MODIS from 2001 to present. In general, there is a spatially explicit pattern of phenology indicators from the north to the south in cities in the conterminous US, with an overall advanced SOS in the past 3 decades. The derived phenology product in the US urban domains at the national level is of great use for urban ecology studies for its medium spatial resolution (30 m) and long temporal span (30 years). The data are available at https://doi.org/10.6084/m9.figshare.7685645.v5.
国家哲学社会科学文献中心版权所有