首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations
  • 本地全文:下载
  • 作者:Jinyang Du ; John S. Kimball ; Lucas A. Jones
  • 期刊名称:Earth System Science Data (ESSD)
  • 印刷版ISSN:1866-3508
  • 电子版ISSN:1866-3516
  • 出版年度:2017
  • 卷号:9
  • 期号:2
  • 页码:791-808
  • DOI:10.5194/essd-9-791-2017
  • 出版社:Copernicus
  • 摘要:Spaceborne microwave remote sensing is widely used to monitor global environmental changes for understanding hydrological, ecological, and climate processes. A new global land parameter data record (LPDR) was generated using similar calibrated, multifrequency brightness temperature (Tb) retrievals from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and the Advanced Microwave Scanning Radiometer 2 (AMSR2). The resulting LPDR provides a long-term (June 2002–December 2015) global record of key environmental observations at a 25 km grid cell resolution, including surface fractional open water (FW) cover, atmosphere precipitable water vapor (PWV), daily maximum and minimum surface air temperatures (Tmx and Tmn), vegetation optical depth (VOD), and surface volumetric soil moisture (VSM). Global mapping of the land parameter climatology means and seasonal variability over the full-year records from AMSR-E (2003–2010) and AMSR2 (2013–2015) observation periods is consistent with characteristic global climate and vegetation patterns. Quantitative comparisons with independent observations indicated favorable LPDR performance for FW (R ≥ 0.75; RMSE  ≤  0.06), PWV (R ≥ 0.91; RMSE  ≤  4.94 mm), Tmx and Tmn (R ≥ 0.90; RMSE  ≤  3.48 °C), and VSM (0.63 ≤ R ≤ 0.84; bias-corrected RMSE  ≤  0.06 cm3 cm−3). The LPDR-derived global VOD record is also proportional to satellite-observed NDVI (GIMMS3g) seasonality (R ≥ 0.88) due to the synergy between canopy biomass structure and photosynthetic greenness. Statistical analysis shows overall LPDR consistency but with small biases between AMSR-E and AMSR2 retrievals that should be considered when evaluating long-term environmental trends. The resulting LPDR and potential updates from continuing AMSR2 operations provide for effective global monitoring of environmental parameters related to vegetation activity, terrestrial water storage, and mobility and are suitable for climate and ecosystem studies. The LPDR dataset is publicly available at http://files.ntsg.umt.edu/data/LPDR_v2/.
国家哲学社会科学文献中心版权所有