期刊名称:Tutorials in Quantitative Methods for Psychology
电子版ISSN:1913-4126
出版年度:2013
卷号:9
期号:1
页码:15-24
DOI:10.20982/tqmp.09.1.p015
出版社:Université de Montréal
摘要:Data clustering techniques are valuable tools for researchers working with large databases of multivariate data. In this tutorial, we present a simple yet powerful one: the k-means clustering technique, through three different algorithms: the Forgy/Lloyd, algorithm, the MacQueen algorithm and the Hartigan & Wong algorithm. We then present an implementation in Mathematica and various examples of the different options available to illustrate the application of the technique.